
A Constraint-Based Planner for Data Production

Wanlin Pang
1

Keith Golden
NASA Ames Research Center

Mo�ett Field, CA 94035
{wpang, kgolden}@email.arc.nasa.gov

Abstract

This paper presents a graph-based backtrack-
ing algorithm designed to support constraint-
based planning in data production domains.
This algorithm performs backtracking at two
nested levels: the outer-backtracking follow-
ing the structure of the planning graph to se-
lect planner subgoals and actions to achieve
them and the inner-backtracking inside a sub-
problem associated with a selected action to
�nd action parameter values. We show this al-
gorithm works well in a planner applied to au-
tomating data production in an ecological fore-
casting system. We also discuss how the idea of
multi-level backtracking may improve e�ciency
of solving semi-structured constraint problems.

1 Introduction

Earth-science data processing (ESDP) at NASA is a data
production problem of transforming low-level observa-
tions of the Earth system, such as remote sensing data,
into high-level observations or predictions, such as crop
failure or high �re risk. Given the large number of so-
cially and economically important variables that can be
derived from the data, the complexity of the data pro-
cessing needed to derive them and the many terabytes
of data that must be processed each day, there are great
challenges and opportunities in processing the data in a
timely manner, and a need for more e�ective automation.
Our approach to providing this automation is to cast it
as a planing problem: we represent data-processing op-
erations as planner actions and desired data products as
planner goals, and use a planner to generate data-�ow
programs that produce the requested data products.
Many of the recent advances in planning, such as state-

based heuristic search or reduction to satis�ability prob-
lems, are not readily adapted to ESDP problems, due
to some of its particular features, such as incomplete in-
formation, large and dynamic universes, complex data
types, and complex constraints, just to name a few.

1QSS Group Inc

We take the approach, like many other researchers
[van Beek & Chen, 1999; Lopez & Bacchus, 2003;
Do & Kambhampati, 2001; Smith, Frank, & Jónsson,
2000], of translating the planning problem into a con-
straint satisfaction problem (CSP). However, since data
processing domains are substantially di�erent from other
planning domains that have been explored, our ap-
proach to translating planning problems to CSPs dif-
fers as well. For example, [Do & Kambhampati, 2001]
use variables to represent goals and domains to repre-
sent available planner actions achieving the goals. Con-
straints are used to encode mutual exclusion relations.
While this is an e�ective approach for propositional plan-
ning problems, we also need variables to represent ob-
jects and action parameters, and constraints to rep-
resent relations among them. Thus, our encoding is
somewhat more complex, and the CSPs resulting from
our encoding are hard to solve by the search methods
employed in other planners [van Beek & Chen, 1999;
Lopez & Bacchus, 2003; Do & Kambhampati, 2001;
Smith, Frank, & Jónsson, 2000].

We have developed a constraint-based planner, called
DoPPLER, for data processing planner. From a data
processing task, the planner constructs a lifted planning
graph, from which it derives a CSP representation of the
planning problem, and then searches the CSP for a so-
lution. Whereas a conventional planning graph [Blum &
Furst, 1997] is a grounded representation, consisting of
ground actions and propositions, a lifted planning graph
contains variables. This is not only a much more concise
representation than an ordinary planning graph, but it
also is the only practical way that we know to repre-
sent potentially in�nite sets of ground actions. Even
though the CSP derived from a lifted planning graph is
di�cult to solve by many existing CSP search methods
such as chronological backtracking (BT), forward check-
ing (FC) or con�ict-directed backjumping (CBJ), it has
certain structural properties inherited from the planning
graph. We have developed a search algorithm based the
structure of the planning graph to improve e�ciency of
solving the CSP.

In this paper, we report our work on applying
DoPPLER to automating data production problem. We
discuss how the data production problem is cast as a



planning problem which, in turn, is translated into a
CSP, and how the planning graph is used to improve
backtracking in solving the CSP. Section 2 discusses data
processing as a planning task and our planning approach.
Section 3 describes a graph-based CSP search algorithm
that outperforms the standard search on problems with
certain structural properties. Section 4 describes the
graph-based planning search algorithm that is the main
contribution of this paper. And Section 5 discusses re-
lated and future work.

2 Planning for Data Processing
Data processing is a task of transforming data products
into other data products. A common sequence of data
processing step is: 1) gather data from multiple sources;
2) convert the data into a common representation; 3)
combine the data and perform other transformations; 4)
feed the data into science models and then run the mod-
els; 5) convert the output of the model into some form
suitable for visualization; 6) repeat some or all these
steps depending on the requirements. To formalize data
processing as a planning problem, we represent data-
processing operations as planner actions, desired data
products as planner goals, and available data sources as
part of the initial state.
Planning in DoPPLER is a two-stage process. The

�rst stage consists of a Graphplan-style reachability
analysis [Blum & Furst, 1997] to derive heuristic distance
estimates for the second stage, a constraint-based search.
These stages are not entirely separate, however; con-
straint propagation occurs in both graph-construction
and constraint search stages, and the graph is re�ned
during the constraint-search phase.

2.1 Lifted Planning Graphs

From the planning problem speci�cation, the planner
incrementally constructs a directed graph, similar to a
planning graph [Blum & Furst, 1997], but using a lifted
representation (i.e., containing variables). Arcs in the
graph are analogous to causal links [Penberthy & Weld,
1992]. A causal link is triple 〈αs, p, αp〉, recording the
decision to use action αs to support precondition p of
action αp. However, instead of an arc to record a com-
mitment of support, we use it to indicate the possibility
that αs supports p. The lifted graph contains multiple
ways of supporting p; the choice of the actual supporter
is left to constraint search. We add an extra term to
the arc for bookkeeping purposes � the condition γαs

p
needed in order for αs to achieve p. A link then becomes〈
αs, γ

αs
p , p, αp

〉
.

Given an unsupported precondition p of action αp, our
�rst task is to identify all the actions that could support
p. Because the universe is large and dynamic, identi-
fying all possible ground actions that could support p
would be impractical, so instead we use a lifted repre-
sentation, identifying all action schemas that could pro-
vide support. Given an action schema α, we determine
whether it supports p by regressing p through αs. The
result of regression is the formula γαs

p . If γαs
p =⊥, then

αs does not support p. Initial graph construction ter-
minates when all preconditions have support or (more
likely) a potential loop is detected.

2.2 From Planning to Constraints

A constraint satisfaction problem (CSP) representing the
search space is incrementally built during the planning
graph construction. The CSP contains: 1) boolean vari-
ables for all arcs, nodes and conditions; 2) variables for
all parameters, input and output variables and function
values; 3) for every condition in the graph, a constraint
specifying when that condition holds (for conditions sup-
ported by arcs, this is just the XOR of the arc variables);
4) for conjunctive and disjunctive expressions, the con-
straint is the respective conjunction or disjunction of
the boolean variables corresponding to appropriate sub-
expressions; 5) for every arc in the graph, constraints
specifying the conditions under which the supported �u-
ents will be achieved (i.e., γα

p ⇒ p, where γα
p is the

precondition of α needed to achieve p) ; 6) user-speci�ed
constraints; and 7) constraints representing structured
objects.

2.3 Planning Search

Guided by heuristic distance estimates extracted from
the planning graph, the planner �rst selects planner sub-
goals to achieve and actions to achieve them, which form
a lifted plan. After the subgoal and action selection,
the the CSP solver �nds values for variables representing
planner action parameters. This is necessary to make ac-
tions executable. During the search, propagation is per-
formed whenever a value is assigned to a variable. The
search is an iterative process involving possible back-
tracks; that is, if there are no valid parameters for a cho-
sen action, the planner has to search for another plan; if
it is impossible to extract a plan from the current plan-
ning graph, the planning graph has to be extended, or
the planner admits the failure of �nding a plan.

2.4 A Simpli�ed Example

A typical data processing task consists of gathering data
�les, transforming them, feeding them into a science
model (e.g., a �re-risk model), and producing a �nal data
�le so that a decision maker can assess the �re risk of a
particular region. For simplicity, we ignore much of the
complexity of the data processing domain, and focus on
one sub-problem: spatial aggregation. So a simpli�ed
task becomes to take some regions from thousands of
available regions and compose them to create a mosaic
that covers a speci�ed region.
Speci�cally, a region is a pair of points (ul, lr) where

ul is the upper-left corner and lr the lower-right corner.
A point is a pair of coordinates (x, y). Normally x and y
would be longitude and latitude, but as a further simpli-
�cation, we will assume both x and y are non-negative
integers. Further, we assume there are only 3 actions
the planner may take, compose two regions horizontally
(comp2h) and vertically (comp2v), and compose 4 re-
gions (comp4 ) as in Figure 1.



comp2h comp4comp2v

input &
preconditions

output &
effects

Figure 1: The planner actions

B5

B1 B2

B2

comp2h

comp4

B2 B3

B2 B3B1

B1 B2 B3

B1

B4 B5 B6

B3B2 B1

B4 B5 B6

B3B2

B5 B6B4

B1 B3B2

B1 B3B2

B4 B5 B6B4 B5 B6

B3B2B1

B5B4 B6

B3B2B1

comp2v

comp4

comp2h

comp2v

B5

B2

B4

B1

B5B4

B2B1B4 B5 B6

B6

B3

B4 B5 B6

B1 B2

B1

B4B5 B6 B4 B5

B2

B5

comp2h
comp2v

B3

B6B5

B2

B6B5

B2 B3

Figure 2: A compact search space: objects in a dot-
ted rectangles are inputs to an action; an object divided
by dashed lines is a composed object; single objects are
available in the initial state.

A problem instance we consider here consists of some
unit squares; that is, squares of (ul, lr) where ul.x+1 =
lr.x and ul.y + 1 = lr.y. For example, ((0, 0), (1, 2), or
(2, 3), (3, 4)). The goal is to compose a region covering
((0, 0), (3, 2)).
The planning graph created by the planner is in

Figure 2. At a high level, the planner �nds a lifted plan
by selecting subgoals and actions, shown in Figure 2 as a
path from the initial state to the goal with dark arrows.
This plan may not be executable because actions are not
grounded. For example, the action comp4 is selected
because it has support from the initial state and it
supports the action comp2h, but its parameters are not
determined yet. The constraint solver then �nds values
for action parameters, which is shown in Figure 2 as
groups of shaded rectangles.

It turns out that �nding a lifted plan is a relatively
easy task because it is a problem of �nding a consistent

assignment to a small number of variables in a very big
constraint problem; whereas �nding values for action pa-
rameters is a di�cult CSP search problem. To address
the issue, we developed a graph-based search algorithm,
which is discussed in the rest of the paper.

3 Graph-Based Backtracking
A constraint satisfaction problem (CSP) consists of vari-
ables, domains that contain possible values the variables
may take, and constraints that limit the values the vari-
able can take simultaneously. In �nite-domain CSPs
(that is, every variable has a �nite domain), a constraint
over a variable subset can be represented extensionally
as a subset of the Cartesian product of the domains of
variables in the constraint. However, in the data pro-
cessing domain we are interested in, the CSPs obtained
from the planning problem contain variables that usually
have in�nite domains [Golden & Frank, 2002]. An in�-
nite domain is represented as an an interval (for numeric
types), regular expression (for string types) [Golden &
Pang, 2003], or symbolic set (for object types). Because
of in�nite domains, the constraints are not represented
extensionally as relations, but as procedures [Jónsson,
1996]. A procedural constraint consists of a set of vari-
ables (the scope) and a procedure (i.e., an execute()
method) that can be executed to enforce the constraint
by eliminating inconsistent values from the domains of
variables in the scope. If execution of a constraint results
in an empty variable domain, execute() returns failure,
indicating the violation of the constraint.
Solving a CSP, in general, is NP-complete. How-

ever, many practical problems possess certain proper-
ties that allow tractable solutions. A class of structure-
based CSP-solving algorithms, called decomposition al-
gorithms, has been developed [Gottlob, 2000; Gyssens,
Jeavons, & Cohen, 1994; Dechter, 1990; Dechter & Pearl,
1989]. Decomposition algorithms attempt to �nd solu-
tions by decomposing a CSP into several simply con-
nected sub-CSPs based on the underlying constraint
graph and then solving them separately. Once a CSP
is decomposed into a set of sub-CSPs, all solutions for
each sub-CSP are found. Then a new CSP is formed
where the original variable set in each sub-CSP is taken
as a singleton variable. Usually the technique aims at
decomposing a CSP into sub-CSPs such that the num-
ber of variables in the largest sub-CSP is minimal and
the newly formed CSP has a tree-structured constraint
graph. In this way, the time and space complexity of
�nding all solutions for each sub-CSP is bounded, and
the newly formed CSP has backtrack-free solutions. The
complexity of a decomposition algorithm is exponential
in the size of the largest sub-CSP. The class of CSPs that
can be decomposed into sub-CSPs such that their sizes
are bounded by a �xed number k is tractable and can be
solved by decomposition in polynomial time. This is the
strength of CSP decomposition. A fatal weakness of CSP
decomposition, however, is that the decomposition is not
applicable to solving a CSP that is not decomposable,
that is, its decomposition is itself. A secondary draw-



back of CSP decomposition is that, even if the CSP is
decomposable, �nding all solutions for all the sub-CSPs
is unnecessary and ine�cient.
Graph based backtracking (GBT) [Pang & Goodwin,

2003] was developed to address these issues. The idea of
the GBT algorithm is to decompose the constraint graph
into a tree of subgraphs (for example, non-separable com-
ponents), and then search for a consistent assignment
to variables involved in a subgraph and extend it to its
children. At a subgraph where no consistent assignment
can be found, GBT backtracks to the parent, reinstan-
tiates variables in that subgraph, and starts from there.
Within a subgraph, GBT searches for a consistent as-
signment to the variables in the subgraph in a way sim-
ilar to standard backtracking, which may involve back-
tracks but limited to within the subgraph. The algo-
rithm stops when a solution is found or when it proves
that no solution exists. The detailed GBT algorithm
can be found in [Pang & Goodwin, 2003]. In a simple
way, the GBT algorithm performs backtracking at two
nested levels: the inner-backtracking inside a subgraph
and outer-backtracking following the subgraph tree ob-
tained from the graph decomposition.
The GBT algorithm shares the merits of CSP decom-

position and overcomes its weaknesses. As with the de-
composition method, GBT decomposes the given CSP
into sub-CSPs based on the underlying constraint graph
decomposition. Unlike the decomposition method, how-
ever, GBT only tries to �nd one solution for a chosen
sub-CSP, which is not separated from other sub-CSPs,
and then tries to extend it to other sub-CSPs. If the un-
derlying constraint graph can be decomposed, the com-
plexity of GBT algorithm is bounded by the size of the
largest sub-CSP; in the case that the constraint graph
is not decomposable, GBT degenerates to a standard
backtracking.
The GBT algorithm, as with other decomposition al-

gorithms, depends on the underlying constraint graph
representation and its decomposition. For details on
graph representation and decomposition see [Gottlob,
2000]. For the planning problem at hand, we adapt GBT
to utilize the planning graph structure for search heuris-
tics.

4 Graph-Based Planning Search
Intuitively, the CSP derived from the planning graph is
well structured due to the fact: i) the variables relevant
to each planner action along with the subgoal it sup-
ports and the conditions enabling the action are tightly
connected; ii) the constraints between variables of dif-
ferent actions are relatively sparse. Ideally, the CSP can
be decomposed based on the constraint graph decom-
position into sub-CSPs, each corresponding to a group
of variables associated with a planner action. However,
by experiments with a few graph decomposition meth-
ods, we haven't been able to decompose the constraint
graph into a tree of subgraphs in a satisfactory way. It
is still an on-going research e�ort to evaluate the process
of translating the planning problem to a CSP aiming at

optimizing the constraint problem in terms of its size
and structural properties.
As an alternative, we decompose the CSP into sub-

CSPs based on the planning graph instead of the con-
straint graph, each sub-CSP containing a group of vari-
ables that are relevant to a node in the planning graph
representing a lifted action. In most of the cases, the
sub-CSPs may not form a tree, which makes the tradi-
tional CSP decomposition methods inapplicable. How-
ever, the GBT algorithm can be adapted easily: the
outer-backtracking is performed to select the planner
subgoals and actions, the inner-backtracking to �nd val-
ues for action parameters by solving the associated sub-
CSP. Even though the sub-CSPs do not form a tree, it is
not a requirement for the graph based search approach
but a preferred property.

4.1 Algorithms

The graph-based planning search algorithm is outlined
in Algorithms 1 and 2. At a high level, the planner per-
forms Best-First search to select the planner subgoals
and actions achieving the subgoals. Once an action is
chosen for a subgoal, it collects a subset of variables rel-
evant to the action and calls a constraint solver SBT to
�nd a consistent assignment for the collected variables.
SBT performs a local backtracking to search for a so-
lution to the sub-problem that is also consistent with
solutions to the sub-problems preceding the current one.
If SBT fails, the high-level search takes control, tries
another action for the current selected subgoal or back-
tracks to a previously selected subgoal. At the end of
selection of subgoals and actions, SBT is called again
to �nd values for certain variables that may have been
missed during the previous search.
Both algorithms interleave search with propagation,

which is a process of continuously executing constraints
as long as variable domains change. The propagation
performs a partial generalized arc-consistency (GAC)1

[Bessiere & Ch, 1997; Katsirelos & Bacchus, 2001], and
it is an essential part of solving the constraint problem,
not only because it reduces the search space by eliminat-
ing some inconsistent values, but also because the con-
straint problem at hand contains variables with in�nite
domains which cannot be enumerated by search. If exe-
cuting a constraint fails, propagate() returns failure,
which implies that the current value assignment to vari-
ables is inconsistent. Because the propagation is not lim-
ited to a sub-problem even if it is invoked by the SBT
solving the sub-problem, it ensures the solutions to local
sub-problems are globally consistent.
Comparing to the GBT algorithm in Section 3, the

high-level BFS corresponds to the outer-backtracking;
it backtracks when the selected best subgoal or action
achieving a subgoal based on the planning heuristics is
not feasible; that is, either the immediate propagation

1We call it partial GAC for two reasons: 1) not every con-
straint procedure enforces the GAC; and 2) not every con-
straint is executed in the propagation.



Algorithm 1 GBFS

Given a set of subgoals in the lifted planning graph G
and a family of action sets A = {A(g)|g ∈ G}, each A(g)
is a set of actions achieving subgoal g. Let G′ ⊆ G be a
set of active subgoals to be achieved (initially, the goals
in the goal state), P = (X, D, C) the CSP derived from
the lifted planning graph, and X ′ a subset of searchable
variables:

GBFS(G, A, P,G′)

1. while (G′ 6= ∅) do
(a) g ← a goal removed from G′

(b) for each action a ∈ A(g)

i. if (propagate(P, {a}) returns failure)
continue for the next action

ii. X ′ ← variables relevant to a
iii. while (SBT(P,X ′) returns success) do
A. Ga ← conditions of a

B. add Ga to G′ and sort G′

C. if (GBFS(G, A, P,G′) returns success)
return SBT(P,X)

iv. continue for the next action

(c) return failure

2. return success

Algorithm 2 SBT

Given a CSP P = (X, D, C), and let X ′ ⊆ X be a set of
searchable variables:

SBT(P,X ′)

1. if (X ′ = ∅) return success

2. select xi ∈ X

3. for each value v ∈ d(xi)

(a) xi ← v

(b) if (propagate(P,{xi}) returns success)

i. update X ′

ii. if (SBT(P, X ′) returns success)

return success

4. return failure

fails, or the subsequent SBT search fails. The lower-
level SBT is standard backtracking plus propagation for
solving a speci�ed sub-problem. Whereas the GBT al-
gorithm and other graph-based decomposition methods
require that the CSPs to be solved can be decomposed
into tree-structured sub-problems, the multi-level back-
tracking algorithm presented here follows the structures
of variable clusters, which may or may not form a tree,
without an explicit decomposition. Such a multi-level
backtracking strategy is particularly well-suited for semi-
structured problems; though, more empirical studies are
needed.

4.2 The Example Again

We take a look at the simpli�ed example again and de-
scribe how the graph-based search algorithm works.
The task is to make a region covering ((0, 0), (3, 2)),

which consists of regions B1, B2, ..., B6, all available from
the initial state. At the beginning of the planning
search, the active goal set G′ contains only the top-
level goal of making ((0, 0), (3, 2)). Ignoring the search
heuristics, we assume that the planner chooses the action
comp2h, which composes two regions horizontally. These
two regions are the parameters of the action, which are
not determined initially. The inner-backtracking solver
SBT is created with these parameters and it is called
to �nd values for them. It quickly �nds two regions,
((0, 0), (2, 2)) and ((2, 0), (3, 2)), for output parameters
of action comp2h, and it also remembers its current sta-
tus so that when it backtracks, it can �nd the next so-
lution (the regions ((0, 0), (1, 2)) and ((1, 0), (3, 2)), see
Figure 2) . The planner adds two subgoals, constructing
the regions ((0, 0), (2, 2)) and ((2, 0), (3, 2)), to the active
goals, and then continues recursively with the next best
goal, which is one of the newly added two subgoals.

4.3 TOPS Application

We have applied the DoPPLER planner to the Ter-
restrial Observation and Prediction System (TOPS,
http://ecocast.arc.nasa.gov) [Nemani et al., 2002], an
ecological forecasting system that assimilates data from
Earth-orbiting satellites and ground weather stations to
model and forecast conditions on the surface, such as soil
moisture, vegetation growth and plant stress. The plan-
ner identi�es the appropriate input �les and sequences
of operations needed to satisfy a data request, executes
those operations on a remote TOPS server, and displays
the results, quickly and reliably.
We have developed A TOPS planning domain, which

speci�es the data operations and data object types
in TOPS. Data operations include running simulation-
based models, reprojection, scaling, and construction of
color composites, mosaics, and animations, etc. For ob-
ject types in TOPS, Figure 3 shows the input and output
objects to a TOPS model. To create a planning problem
instance (i.e., a TOPS task), the user needs only to spec-
ify the planner goal, which is a description of a desired
data product. A sample TOPS task would be something



lon
lat
lon
lat

45
-120
30
-80

ul

lr

s-var
res
proj

region
date

clouds
quality

FPAR
8km

LAZEA
.

1/1/04
.10
.90

TOPS Model

inputs fpar lai precip ...

outputs soilwgpp snow ...

s-var
res
proj

region
date

clouds
quality

LAI
8km

LAZEA
.

1/1/04
.10
.90

s-var
res
proj

region
date

quality

GPP
8km

LAZEA
.

1/1/04
.90

Figure 3: Structured inputs and outputs to a TOPS
model

like �display Gross Primary Production (GPP) for con-
tinental US on May 5th, 2004�.
The motivation of developing the graph based plan-

ning search is to speed up the search process so that the
planner can produce the requested data product within
a time limit acceptable to the user. Even though it is dif-
�cult for us to compare DoPPLER planner with publicly
available planners, which cannot handle data-processing
problem, we have compared DoPPLER to itself by turn-
ing on or o� the inner-backtracking SBT. Without inner-
backtracking SBT, for most of the TOPS tasks, it usu-
ally takes a few tries with di�erent variable ordering
heuristics to solve a problem; sometimes it fails within
a speci�ed time limit (e.g., 5 minutes). With inner-
backtracking SBT turned on, the same TOPS tasks can
be solved quickly without trying the additional variable
ordering heuristics. However, we are currently conduct-
ing experiments on more TOPS tasks and arti�cial prob-
lems like the one in Section 2.4.

5 Conclusions
We have discussed the data production problem and how
we reduce it to planning and solve the planning problem
with a constraint search and propagation approach. A
key element of our approach is the lifted planning graph,
which we use as a basis for our CSP encoding, and use
further to guide the planning and constraint search. The
graph-based backtracking algorithm presented here has
proved to be e�ective in our planner; it is also a gen-
eral CSP solver that we intend to evaluate further on
structured or semi-structured problems and to compare
to other search and decomposition methods.
There has been little work in planner-based automa-

tion of data production. Two notable exceptions are
Collage [Lansky, 1998] and MVP [Chien et al., 1997].
Both of these planners were designed to provide assis-
tance with data analysis tasks, in which a human was in
the loop, directing the planner. In contrast, our planner
does not require human interaction, which is appropriate
for domains like TOPS, in which data production must
be entirely automated; there is simply too much data

for human interaction to be practical. Pegasus [Blythe
et al., 2003] is a work�ow planning system for compu-
tation grids, a problem similar to ours, though their fo-
cus is on mapping pre-speci�ed work�ows onto a speci�c
grid environment, whereas our focus is on generating the
work�ows.

References
[Bessiere & Ch, 1997] Bessiere, C., and Ch, J. 1997.
Arc-consistency for general constraint networks: Pre-
liminary results. In Proceedings of IJCAI-97, 398�404.

[Blum & Furst, 1997] Blum, A., and Furst, M. 1997.
Fast planning through planning graph analysis. AIJ
90(1�2):281�300.

[Blythe et al., 2003] Blythe, J.; Deelman, E.; Gil, Y.;
Kesselman, C.; Agarwal, A.; Mehta, G.; and Vahi,
K. 2003. The role of planning in grid computing.
In Proc. 13th Intl. Conf. on Automated Planning and
Scheduling (ICAPS).

[Chien et al., 1997] Chien, S.; Fisher, F.; Lo, E.;
Mortensen, H.; and Greeley, R. 1997. Using arti�cial
intelligence planning to automate science data analy-
sis for large image database. In Proc. 1997 Conference
on Knowledge Discovery and Data Mining.

[Dechter & Pearl, 1989] Dechter, R., and Pearl, J. 1989.
Tree clustering for constraint networks. Arti�cial In-
telligence 38:353�366.

[Dechter, 1990] Dechter, R. 1990. Enhancement schemes
for constraint processing: backjumping, learning, and
cutset decomposition. Arti�cial Intelligence 41:273�
312.

[Do & Kambhampati, 2001] Do, M., and Kambham-
pati, S. 2001. Planning as constraint satisfaction:
Solving the planning graph by compiling it into CSP.
Arti�cial Intelligence 132:151�182.

[Golden & Frank, 2002] Golden, K., and Frank, J. 2002.
Universal quanti�cation in a constraint-based planner.
In AIPS02.

[Golden & Pang, 2003] Golden, K., and Pang, W. 2003.
Constraint reasoning over strings. In Proceedings of
the 9th International Conference on the Principles and
Practices of Constraint Programming.

[Gottlob, 2000] Gottlob, G. 2000. A comparison of
structural CSP decomposition methods. Arti�cial In-
telligence 124:243�282.

[Gyssens, Jeavons, & Cohen, 1994] Gyssens, M.; Jeav-
ons, P.; and Cohen, D. 1994. Decomposing constraint
satisfaction problems using database techniques. Ar-
ti�cial Intelligence 66:57�89.

[Jónsson, 1996] Jónsson, A. 1996. Procedural Reasoning
in Constraint Satisfaction. Ph.D. Dissertation, Stan-
ford University.

[Katsirelos & Bacchus, 2001] Katsirelos, G., and Bac-
chus, F. 2001. GAC on conjunctions of constraints.
In CP-2001.



[Lansky, 1998] Lansky, A. 1998. Localized planning with
action-based constraints. Arti�cial Intelligence 98(1�
2):49�136.

[Lopez & Bacchus, 2003] Lopez, A., and Bacchus, F.
2003. Generalizing graphplan by formulating planning
as a CSP. In Proceedings of IJCAI-2003.

[Nemani et al., 2002] Nemani, R.; Votava, P.; Roads, J.;
White, M.; Thornton, P.; and Coughlan, J. 2002.
Terrestrial observation and predition system: Integra-
tion of satellite and surface weather observations with
ecosystem models. In Proceedings of the 2002 Inter-
national Geoscience and Remote Sensing Symposium
(IGARSS).

[Pang & Goodwin, 2003] Pang, W., and Goodwin, S. D.
2003. A graph based backtracking algorithm for gen-
eral CSPs. In Proceedings of 6th Canadian Conference
on Arti�cial Intelligence (CAI-2003), 114�128.

[Penberthy & Weld, 1992] Penberthy, J., and Weld, D.
1992. UCPOP: A sound, complete, partial order plan-
ner for ADL. In Proc. 3rd Int. Conf. Principles of
Knowledge Representation and Reasoning, 103�114.

[Smith, Frank, & Jónsson, 2000] Smith, D.; Frank, J.;
and Jónsson, A. 2000. Bridging the gap between plan-
ning and scheduling. Knowledge Engineering Review
15(1):61�94.

[van Beek & Chen, 1999] van Beek, P., and Chen, X.
1999. CPlan: A constraint programming approach
to planning. In Proceedings of AAAI-99.


